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1. Why Implied Volatility is a Potentially Undefined Concept

There are numerous reasons to take issue with the concept of implied volatility. We could argue all day about h
pricing mechamism backwards through a simple model - this has always seemed to me like pointless curve fitt
highlight the exceptionally bad behaviour of implied volatility when we consider the simplest non-vanilla opti

When Things are OK

When the valuation is a monotonic function of volatility (strictly increasing or decreasing), there is usually no 
falls into this category. Let's build a symbolic model of this option and plot the value as a function of volatility
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We plot the option value as a function of the volatility, for an option where the strike is at 10, the underlying a
free rate (cc) and zero dividends:



Plot @BlackScholesCall @11, 10, vol, 0.05, 0, 1 D, 8vol, 0.02, 0.40 <,
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Things are sometimes OK, sometimes highly unstable

It does not take much to mess up the calculation of implied volatility. Let's add a dilution effect to the Black-S
This is one of the simpler models discussed by:

Lauterbach, B., & Schultz, P., Pricing Warrants: An Empirical Study of the Black-Scholes Model and its Alter

WarrantEqn @p_, k_, sd_, r_, t_, warprice_, shares_, warrants_,
shperwar_, q_ D : = Hshares * shperwar Hshares + shperwar *warrants LL*
BlackScholesCall @p *Exp@-q * t D + warrants * warprice shares, k, sd, r,

WarrantValue @p_, k_, sd_, r_, t_, shares_, warrants_, shperwar_, q_ D
warprice . FindRoot @
warprice == WarrantEqn @p, k, sd, r, t, warprice, shares, warrants, shp

Plot @WarrantValue @15, 10, vol, 0.05, 1, 1000, 100, 1, 0 D, 8vol, 0. 0
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For lower prices the implied vol is highly unstable or non-existent.



Things are definitely not OK - there are two or even three implied volatilities

A simple barrier option will exhibit the phenomenon of there being two volatilities consistent with a given valu
underlying is at 45, the strike at 50 and the knockout barrier at 60. As we first increase the volatility from a ver
volatility increses further the probability of knockout increases, lowering the value of the option. By tweaking 
for a small range of market option prices. The model of barriers we use a Mathematica implementation of the 

Rubenstein, M. & Reiner, E., Breaking Down the Barriers, RISK Magazine, September 1991.

Plot @UpAndOutCall @0, 45, 50, 60, vol, 0.05, 0.0, 1 D,
8vol, 0.05, 0.4 <, PlotRange -> All D;
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Plot @UpAndOutCall @1.7, 45, 50, 60, vol, 0.05, 0.0, 1 D,
8vol, 0.05, 0.4 <, PlotRange -> All D;
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In other words, vega is positive apart from an interval in which it is negative:



Plot @UpAndOutCallVega @1.7, 45, 50, 60, vol, 0.05, 0.0, 1 D,
8vol, 0.05, 0.4 <, PlotRange -> All D;
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Things are impossible - there are infinitely many answers

If you want to see just how bad it can get, a barrier option can do still more interesting things. If we consider a
barrier, and arrange for the risk-free rate and the dividend yield to concide, we can get a dead zero vega (and z
coincide with the computed value, you can have any implied volatility you want. Otherwise there is no implied
part 1. 

Plot3D[UpAndOutPut[0,  S, 50, 50, vol,0.1, 0.1, 1],
{S, 30, 50}, {vol, 0.05, 0.4 }, PlotRange -> {-0.01, 0.01}, PlotPoi
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A safe rule is to avoid reporting implied vols for anything but vanilla calls and puts. You need to check any ex
reporting implied vol. Probably a good idea to persuade traders to stop using it - not easy. 



2.. Why are Derivatives Tricky from a Math View?

Let's explain why derivatives are a lot trickier than most people might think they are. There are many issues. T

The computation of "a derivative" is the calculation of the value of a function and several of its first and secon
sensitivity parameters. 

Why does this makes things (i.e. numerical computation) so nasty?

It is useful to go back to basic mathematical analysis, to remind ourselves of some points.

Non-Uniform Convergence 101

Let's think about errors in calculations as a function f . Suppose it is parametrized by a variable n such as tree o

fnHxLfi 0

as

n fi ∞

In this case a (mathematical!) analyst would say that f  converges pointwise to zero. The question arises as to w
Naively one might expect that also becomes small as the function becomes small. Indeed, many functions satis

xm

n
;

sinHxL

n

Unfortunately, it is not always true. The following classic example makes this clear. We consider the function:

fHx, nL=
sinHnxL

n

It's first derivative, or "delta", is then

¶ fHx, nL

¶x
= cosHn xL

It's second derivative, or "gamma", is then

¶2 fHx, nL

¶x2
= -nsinHn xL

Suppose such a function is now thought of as the error in some numerical simulation. We must appreciate that
possible moderate error in first derivative d -> possible large error in second derivatives G.
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The lesson of this is we can be deluded about the quality of our analysis by just looking at the accuracy of the 
how this can happen with a good algorithm is given below. Another simple visual example is to consider a seq
goes to zero the slopes remain infinite at the edges.

3. Finite-Difference Methods - 
avoid Crank-Nicholson Schemes with bigger time steps

The use of implicit finite-difference schemes is increasingly popular. This is in part due to the fact that they ar
schemes. You need to know that some of the popular ones are only stable, "sort of" - high frequency modes ma
havoc with the Greeks.

This is in fact not a new story. It has been known for about 40 years in the academic numerical analysis comm
practitioners. 

Background Refs

Mitchell, A.R. & Griffiths, D.F., 1980, The Finite Difference Method in Partial Differential Equations, John W
good example of how Douglas gives better results than CN

Richtmeyer, R.D. & Morton, K.W., 1957, Difference Methods for Initial Value Problems,  Krieger repri
(Read this if you think I am crazy to recommend against CN!)

Smith, G.D., 1985,  Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford U

Wilmott, P., Dewynne, J. & Howison, S., 1993, Option Pricing - Mathematical models and computation,Oxfor

Wilmott, P., Dewynne, J. & Howison, S., 1995, The Mathematics of Financial Derivatives, Cambridge Univer

To develop this topic, I assume that one way or the other, our option pricing problem has been reduced to the d

¶u

¶t
=
¶2u

¶x2

I realise this is a major limitation - but the fact that interesting problems arise in this simplest of cases means o
Black-Scholes, discretized IR PDEs). We introduce a discrete grid with steps Dt, D x, where Dx is the grid ste
time, and set

un
m = uHmDt, nDxL

All the difference schemes involve a parameter a that is given by

a =
Dt

Dx2



and the second-order difference operator

dx
2 un
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m

also plays a role. A well-known scheme for the solution of the diffusion equation is the Crank-Nicholson schem
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is called the Douglas scheme. It is very important due to the fact that it is exact to order dx
4, even though it con

intial conditions (here payoffs), the Douglas scheme gives much better results than Crank-Nicholson.  

Another view of the Dougals scheme is that it is the natural implicit generalization of the trinomial model, to w

However, neither of these implicit schemes are suitable for option-pricing problems, where the payoff is typica
strike), or is even discontinuous. This has in fact been known since at least the work of R & M.

3 Time-Level Schemes

There are a variety of ways of curing the oscillation problem, most of which involve 3 time-levels if accuracy 
There is a 3 time-level extension of the Douglas scheme which takes the form.
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This type of process requires a kick-off procedure, since initially we only know u1. We use the ordinary Dougl
with  a fi  a 2, to get the scheme going.

Crank-Nicholson vs 3 Time-Level Douglas

It is a simple matter to implement these schemes on a computer. I did so in Mathematica 3.0, for a vanilla Euro
solution for a European Put, inspecting both the valuation and the Greeks. Standard parameters were:

Underlying = 10;

Risk-free Rate = 5%;

Dividend Yield = 0;

Expiry = 5 Years;

Volatility = 20%

We were interested in using moderately large time-steps, so set a = 8. Graphical results follows. In all cases th
using the Mathematica 3.0 compiler to create solvers for tridiagonal  systems, and SOR, PSOR analogues

Error in Valuation - Crank-Nicholson

A cursory inspection of the numerical answers vs the exact solution suggests that all is well.



S Exact Crank -Nich Error

2.00000 5.78850 5.78860 -0.00006

3.00000 4.80050 4.80050 0.00002

4.00000 3.86160 3.86150 0.00003

5.00000 3.02080 3.02090 -0.00008

6.00000 2.31060 2.31080 -0.00022

7.00000 1.73830 1.73870 -0.00032

8.00000 1.29290 1.29320 -0.00036

9.00000 0.95445 0.95478 -0.00033

10.00000 0.70016 0.70187 -0.00171

11.00000 0.51461 0.51492 -0.00031

12.00000 0.37735 0.37766 -0.00032

13.00000 0.27698 0.27726 -0.00028

14.00000 0.20370 0.20394 -0.00024

15.00000 0.15019 0.15040 -0.00021

16.00000 0.11108 0.11125 -0.00018

But nothing could be further form the truth, as a plot of the error in the numerically-computed solution reveals
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Numerical vs Exact Gamma - Crank-Nicholson

By the time we have differentiated to get gamma the error has become significant, as an overlay of the exact an
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Numerical vs Exact Theta - Crank-Nicholson

teh parameter theta is coupled to gamma through the Black-Scholes equation, resulting in even nastier problem
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The error in theta is about 200% of its exact value.

Error in Valuation - 3 Time-Level Douglas

This  time the errors in the valuation are much smoother and slightly smaller in scale.
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Numerical vs Exact Gamma - 3 Time-Level Douglas

This time the differentiation to get the Greeks gives us no problems - when we overlay the exact and computed
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Numerical vs Exact Theta - 3 Time-Level Douglas

The 200% error in theta has gone away:
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The 3 time-level scheme offers a dramatic increase in the accuracy of the Greeks, for very little extra work. Th
compromising accuracy in both the valuation and the Greeks - we have found the 3 time-level Douglas t
10 years to expiry with only 40 time steps. 

4. Conceptual Issues with Trees

Probability vs Symmetry

It is well known that standard treee models suffer from the potential for negative probability or negative asset 
completely and work from the point of view of symmetry relations. This will allow us to see in a natural way h

Again - we pose and investigate the problem within the equity-like Black-Scholes world. Corresponding issue
a  backwards evolution scheme of the form

VHS, tL= ª-r D t

i=1

n

wi VHS ui , t + D tL

The variables wi  are called the "weights", and the points S*ui  are called the "abscissas". If n = 2 we have a ge
general trinomial scheme. Explicitly, for a binomial scheme

VHS, tL= ª-r D t @w1 VHS u1, t + D tL+ w2 VHS u2, t + D tLD



Basic Solutions of the Black-Scholes equation

What we shall do now is to write down some basic solutions of the Black-Scholes equation that we wish to be 
somewhat arbitrary. One question is how many solutions to use? For a binomial scheme, we have two weights
For a trinomial scheme, there are 3 weights, 3 abscissas and the time-step, totalling 7. It is traditional to allow 
unknowns for a binomial scheme, and 6 for trinomial.

What we shall demand is that the tree rule is such that it is consistent with certain power solutions of the Black
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The special cases for n = 0, 1, 2 are:

V = Z ª-r HT-tL

V = Z J
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K
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Considering the first negative powers, for n = - 1, -2 we have:
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Let's demand that the binomial rule be consistent with some of the power solutions. We call a tree satisfying 
"symmetric tree", because the mapping defined by the tree rule preserves, or leaves invariant, the solut
this gives us:

w1 u1
n + w2 u2

n = ªI
1
2 s2 nHn-1L+nHr-qLMD t

and for n = 0, 1, 2 this gives

w1 + w2 = 1

w1 u1 + w2 u2 = ªHr-qLD t

w1 u1
2 + w2 u2

2 = ªI2 Hr-qL+ s2MD t

The first pair of negative powers give us the equations, for -1, -2 respectively, 

w1

u1
+

w2

u2
= ªI-Hr-qL+ s2MD t

w1

u1
2
+

w2

u2
2
= ªI-2 Hr-qL+3s2MD t

The condition that the weights sum to unity is traditionally regarded as arising from the fact that these weights
view is unnecessary - it suffices to demand that "cash is conserved", i.e., that the tree preserves the simple cash
these symmetry conditions can indeed be derived from a probabilistic view - you consider matching various m

It is clear that we can generate weights and abscissas consistent with up to 4 simple solutions of the Black-Sch
solutions will be called "supersymmetric". First, however, we need to see how some standard models arise, and

Schemes of Jarrow-Rudd Type

We impose the conditions



w1 = w2 =
1

2

which solves the cash conservation condition, leaving us with two unknowns and two conditions based on the 

u1 + u2 = 2ªHr-qLD t

u1
2 + u2

2 = 2ªI2 Hr-qL+ s2MHT-tL

These can be solved with pen and paper, by solving a quadratic sequation, but we can be lazy and get Mathema

soln = Solve @8u1 + u2 == 2 Exp@Hr - qL Dt D, u 1 ^2 + u2 ^2 == 2 Exp@H2 Hr - qL

The larger of the two solutions (here u2) is now called u, as is conventional

u = Simplify @PowerExpand @Simplify @u2 . soln @@1DDDDD

ªHr-qLDt J1+
" +++++++++++++++++++++
ªDts2 - 1N

d = Simplify @PowerExpand @Simplify @u1 . soln @@1DDDDD

ªHr-qLDt J1-
" +++++++++++++++++++++
ªDts2 - 1N

These give us the "exact" form of the up and down states in the Jarrow-Rudd model. Note that the d variable c

s2 Dt << log(2L

for this particular scheme to be sensible. This is the version of JR described by Wilmott et al. However, there i
described by Hull (1996), and appears to be the form originally given by Jarrow and Rudd. In the approximate
down scale factors are written as:

u = ªIr-q-s2 2MDt ªs 
+++++++
Dt ; d = ªIr-q-s2 2MDt ª-s 

+++++++
Dt

This then conveniently avoids the down scale factor becoming negative, but this approximation violates the m

Schemes of Cox-Ross-Rubenstein Type

To get schemes similar to those of CRR, we impose the conditions

u1 = 1 u2

leaving us with two unknowns and conditions:

w1 u1 + H1- w1L 1 u1 = ªHr-qLD t

w1 u1
2 + H1- w1L 1 u1

2 = ªI2 Hr-qL+ s2MD t

This leads to a very well known scheme with potentially negative up and down "probabilities". There are "exa



Supersymmetric Schemes?

The question arises as to whether we can build other schemes that are "supersymmetric". We can pick one othe
abscissas so that this solution is preserved. The question arises as to which one to take. We can only rely on co
different possibilities is helpful. We note that in some situations, for example Put options, we wish to model ca
of the underlying. This suggests that it might be useful to consider setting the tree parameters so that the soluti
use the first negative power, this creates a supersymmetric tree rule, and will turn out to have an interesting im

With this choice, we have the four unknows satisfying the four equations (the last one is the new constraint tha

w1 + w2 = 1

w1 u1 + w2 u2 = ªHr-qLD t

w1 u1
2 + w2 u2

2 = ªI2 Hr-qL+ s2MD t

w1

u1
+

w2

u2
= ªI-Hr-qL+ s2MD t

In the binomial case, we wish to solve four of the relations:

w1 u1
n + w2 u2

n = ªI
1
2 s2 nHn-1L+nHr-qLMD t = An BnHn-1L2; A = ªHr-qLD t ; B = ªs

2 D t

which serve to define A, B also. We give the set with n = -1, 0, 1, 2 to Mathematica as the system of equation

symmetries = 9w1 + w2 == 1, w 1 u1 + w2 u2 == A, w 1 u1
2 + w2 u2

2 == A2 B,
w1

u1

+
w2

u2

=

When Mathematica is asked to solve this system, two solutions are obtained - we just extract the first, and sim

soln = Simplify @Solve @symmetries, 8w1 , w 2 , u 1 , u 2<D@@1DDD

9w1 fi
3 + B-

+++++++++++++++++++++++++++++
-3 + 2 B + B2

6 + 2 B
, w 2 fi

3 + B+
+++++++++++++++++++++++++++++
-3 + 2 B + B2

6 + 2 B
, u 2 fi

1
2

A I1 + B-
++++++
-3

u1 fi
1
2

A I1 + B+
+++++++++++++++++++++++++++++
-3 + 2 B + B2 M=

One can also check the extent to which neighbouring symmetries apply:

CheckSymmetry @u_, d_, p_, q_, n_, a_, b_, solution_ D : =
Factor @Simplify @p u^n + q d^n - a^n b^ HHn - 1L n 2L . solution DD

They are approximately satisfied, all having a factor HB- 1L2, which is OHDt2L. We can look at a whole range o
form B = 1+ x. You should think of x as s2 Dt.



MatrixForm @
Table @Series @HCheckSymmetry @u1 , u 2 , w 1 , w 2 , n, A, B, soln D . B ->
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We see that all the positive and negative solutions are preserved with an error that is of order Dt2, though the s
from zero. I conjecture that this is the best that can be done with a binomial scheme. With a trinomial scheme, 
way, with Mathematica.

5. Numerical Issues with Trees

Convergence is appalling:

Show@explot, CRRPlotCApp, PlotRange -> 80.69, 0.70 <, DisplayFuncti o
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The scale of the error here might be acceptable, but it is easy to get more spectacular problems:

Boyle-Lau Effects with Barriers

Boyle, P.P. and Lau, S.H.,  - "Bumping Up Against the Barrier with the Binomial Method",  Journal of Deriva

sawtooth = Table @8k, CRRDownAndOutCallApp @95, 100, 90, k, 0.1, 0, 0

We plot it, bearing in mind that the exact solution is almost exactly 6, which is given by the lower bound of th



ListPlot @sawtooth, PlotJoined -> True D;
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The main point is to appreciate that with "standard"  trees, there may be a severe mismatch between wh
the option contract. If  this is ignored, the values are not trustworthy.  In simple vanilla cases, the best cou
be arranged to straddle the strike, using the methods we have described. With  barriers, the Boyle-Lau m

Remarks on Greeks on Trees

There is a piece of folklore that says that Greeks are more difficult to define with the JR form than with the CR
for the drift and get good values for delta, gamma, theta. 

Rather more interesting is the observation, which seems to have been made recently by several people indepen
based on probability - I derived them from the PDE view), that for an interesting class of European options, th
other Greeks. That is:

L = S2 sGHT- tL

r= -HT- tL HV- SDL

holds for large class of European style options. These formulae may be useful in situations where direct compu
and FD (where you do it all again). I do not know 

a) for precisely what class of options these constraints are satisfied;

b) how to generalize e.g., to Americans

I have checked, using Mathematica's symbolic Greeks, that this allows you to get reasonable estimates of all G
get usable estimates for Americans if you are well away from early exercise boundary, but it would be good to



6. Extending the Domain of Analytical Solutions with Mathematica

What we can do is to build implementations of:

a) Cunning exact solutions of difficult problems, but which may require advanced calculus tools;

b) Interesting analytical approximations.

Once we have these we can start to investigate other numerical algorithms, such as Monte Carlo methods. A si
Viswanathan-Goldman-Sosin-Gatto models can be used to investigate the convergence of sampling models. T
getting the variance down and getting the right answer in high-frequency sampling of the maxima/minima. Th
to talk about a formula for the arithmetically averaged Asian developed by Geman, Yor and Eydeland. (G&Y,
March 1995).

Suppose that the current time is t, and that the option matures at a time T > t. The averaging is arithmetic, cont
known average value of the underlying over the time interval @t0, tD is ES. GY define the following changes of

t=
1

4
s2 HT- tL;

n=
2Hr- qL

s2
- 1

a =
s2 HK HT- t0L- Ht - t0LESL

4S

and the function of a (transform) variable p as:

mHpL=
++++++++++++++++++
n2 + 2 p

The value of the average price option is then given by

ª-r HT-tL4S CHt, n, aL

HT - t0Ls2

The remaining function C@n, t, aD is not given explicitly, but GY give its Laplace Transform, 

UHp, n, aL=
0

∞
CHt,n, aLª-pt t

as an integral:

UHp, n, aL= 0

1
2a x

m-n
2 -2 H1- 2a xL

m+n
2 +1 ª-x x

pHp- 2n- 2LGIm-n
2

- 1M

where m is as given above as a function of p and n. GY develop a series description of the Transform and show
can be managed and simplified in Mathematica.

Mathematica Implementation of Exact Arithmetic Asian

The first part of the translation to software is obvious - we first enter the definitions of the various basic functio

t@T_, t_, s_D : = s^2 HT - t L 4;
n@r_, q_, s_D : = 2 Hr - qL s^2 - 1;
a@S_, ES_, K_, s_, T_, t_, to_ D : = s^2 H4 *SL HK* HT - to L - Ht - to L*
m@n_, p_ D : = Sqrt @n^2 + 2 * pD

Now we enter the definition of the integral that is part of the Transform, and request immediate evaluation:



F@p_, m_, n_, a_D =
0

1
2 a

x
m-n

2
-2 H1 - 2 a xL

m+n
2

+1 Exp@-xD x

If Aa > 0 && ReA
m
2
-
n
2
E > 1 && ReA

m
2
+
n
2
E > -2 && Re@m + nD > -4,

1
Gamma@1 + mD

J2
1
2 H2-m+nL a

1
2 H2-m+nL GammaA

1
2
H-2 + m - nLE GammaA

1
2
H4 + m + nLE Hypergeo m

0

1
2 a

E-x x-2+ m-n2 H1 - 2 x aL1+ m+n
2  xE

We see that Mathematica can actually evaluate the expression in "closed form", albeit in terms of a special fun
have received a result dependent on certain conditions - we can extract the answer (which is valid in our case) 

G@p_, m_, n_, a_D = F@p, m, n, aD@@2DD

1
Gamma@1 + mD

 

J2
1
2 H2-m+nL a

1
2 H2-m+nL GammaA

1
2
H-2 + m - nLE GammaA

1
2
H4 + m + nLE Hypergeom e

There are further cancellations when we insert the other terms that make up the transform:

U@p_, m_, n_, a_D = Simplify A
G@p, m, n, aD

p Hp - 2 n - 2L GammaA m-n

2
- 1E

E

J2
1
2 H2-m+nL a

1
2 H2-m+nL GammaA

1
2
H4 + m + nLE Hypergeometric1F1 A

1
2
H-2 + m - nL,

Hp H-2 + p - 2 nL Gamma@1 + mDL

In standard mathematical notation, the Transform is just:

TraditionalForm @U@p, m, n, aDD

J2
1
2 H-m+n+2La

1
2 H-m+n+2LGJ

1

2
Hm+ n+ 4LN1 F1 J

1

2
Hm- n- 2L; m+ 1;-

1

2a
NN HpHp- 2n- 2LGHm+ 1LL

We now have the ingredients to build the Mathematica model of the arithmetic average price Asian Call. 

Off @NIntegrate::slwcon D

AriAsianPriceCall @S_, ES_, K_, r_, q_, s_, T_, t_, to_ D : =
Module @8ti = t@T, t, sD, n = n@r, q, sD, a = a@S, ES, K, s, T, t, to D,
contour = 2 n + 3;
ac = Re@ 1 H2 Pi L *NIntegrate @ U@Hcontour + I p L, m@n, Hcontour + I p LD,

Exp@Hcontour + I p L * ti D, 8p, -500, 500 <, MaxRecursion -> 11DD;
Exp@-r *HT - t LD* 4 *S HHT - to L *s ^2L * acD



AriAsianPriceCall @1.9, 0, 2, 0.05, 0, 0.5, 1, 0, 0 D

0.193174

AriAsianPriceCall @2.0, 0, 2, 0.05, 0, 0.5, 1, 0, 0 D

0.246417

AriAsianPriceCall @2.1, 0, 2, 0.05, 0, 0.5, 1, 0, 0 D

0.306223

Remarks

This type of analytical result can be made the basis of a great deal of further study. They have been used by Fu
College preprint, March 1997) to analyse in detail the efficiency of Monte Carlo simulation. This result can be
used to test and expose the difficulties in a simulation world. 

A Challenge! In my book I have issued a foolish challenge. To anyone who can get this working to 5dp in a sp
can get it working in C++ within 40 programming hours, two bottles of vintage champagne. It took me a total 
Also contrast the effort required here with that required to solve the equivalent 3D PDE! This solution is some
too quickly to a numerical method. We should spend more time on analytics and less time building huge simul
cases need to be checked against the analytics.

7. The Normal Distribution

There are a number of rational approximations kicking around, with reasonable if not outstanding accuracy. A
them. This may seem irrelevant, as we can differentiate the cumulative normal distribution analytically. Howe
algorithm to get the Greeks, then you will see the problems. 

What else can you do? It turns out that the power series and asymptotic series are not great, but that there is an
is not new - but it is buried deep inside the algorithms section of the wonderful book "Numerical Recipes" (Pre
(1972, Handbook of Mathematical Functions, Dover). Once you see it you realise it is easy to code in any lang
small to moderate. Here is the latter:

ContinuedFractionApproxTwo @x_, n_ D : =
Module @8u = Range@nD, v, w <,
v = Reverse @uD;
Fold @H2 * #2 - 1L + x^2  H-1L^#2 #2 #1 &, 1, v DD



ContinuedFractionApproxTwo @x, 20 D

1-
x2

2 x2

5- 3 x2

4 x2

9- 5 x2

6 x2

13- 7 x2

8 x2

17- 9 x2

10x2

21- 11x2

12x2

25- 13x2

14x2

29- 15x2

16x2

33- 17x2

18x2

37- 19x2

20x2+39

+35

+31

+27

+23

+19

+15

+11

+7

+ 3

The approximation to the Normal distribution is given by:

CFATwo@x_D = 1 2 + Exp@-x^2 2 D Sqrt @2 Pi D x ContinuedFractionAppro x

Needs@"Derivatives`BlackScholes`" D

diffCFTwo @x_D = CFATwo@xD - Norm@xD;

Let's look at the error for -3< x < 3 : 

Plot @diffCFTwo @xD, 8x, -3, 3 <, PlotRange -> All D;

-3 -2 -1 1 2 3

-6·10-11

-4·10-11

-2·10-11

2·10-11

4·10-11

6·10-11

This and the other continued fraction expansions are what I recommend for accurate computation of the cumul
Mathematica. They are given by equations (26.2.14) and (26.2.15) of Abramowitz and Stegun (1972). They ar
significantly smaller (here it is 5 orders of magnitude) than the best of the popular rational approximations.



Summary: Warnings and Suggestions

Do Not Dismiss Analytics - although they do not apply universally they are the only good tests;

Use a Symbolic Algebra System for Model Building - there are substantial gains when dealing with Greeks;

Often all is not what it seems:

Greeks may be way off even when fair value is accurate;

Implied Volatility may be useless;

Well respected algorithms (e.g Crank-Nicholson) may give wrong answers even when it looks good superficia

Models should be built adapted to boundary conditions - strength of Finite-Difference Models vs Binomial/Tri

Trees can be built so as to avoid negative probabilities or asset prices. However they are built their convergenc

Make more use of exact solutions - whether or not they are useful for a particular contract is irrelevant - they c
as control variates.

All comments and criticisms very welcome. Perhaps it is time for an open Derivatives Code Intercomparison S


